
Week 3 - Friday

 What did we talk about last time?
 Inheritance examples
 Overriding methods

 We can imagine a hierarchy of inheritance starting with a Person with the
following members:
 Name (final)
 Age

 Student extends Person and adds:
 Major
 GPA

 Politician extends Person and adds:
 Political party

 OtterbeinStudent extends Student and adds:
 ID number (final)

 Members should have getters and setters as appropriate
 All classes should override the toString() and equals() methods

 Every object has a copy of its parent object inside (which has its
parent inside, and so on)

 All methods from the class and parents are available, but the
outermost methods are always chosen
 If a class overrides its parent's method, you always get the overridden

method

Wombat

toString()
getName()

Marsupial

toString()
hasPouch()

Object

toString()

 Dynamic binding is safe and flexible
 You always get the most up-to-date method

 But it has a performance penalty
 The method that will be called is not known at compile time
 Instead, it has to be looked up in a table inside the object
 Virtual dispatch table

 To avoid this penalty, languages like C# and C++ require the
parent method to be marked as virtual if you want to
override it and get dynamic binding

 Static methods do not exhibit dynamic binding
 They can be hidden by child classes, but calling them with a

class name (or even by a reference) will call the method
belonging to the type (not the object)

public class A {
public static String getMessage() {

return "A";
}

}

public class B extends A {
public static String getMessage() {

return "B";
}

}

 When a static method is called, it's always based on the
reference type, not the object type

A a = new A();
A b = new B();
System.out.println(A.getMessage()); // "A"
System.out.println(B.getMessage()); // "B"
System.out.println(a.getMessage()); // "A"
System.out.println(b.getMessage()); // "A"

 As you know, the final keyword is used to mark both
member variables and local variables as constant

 final can be applied to methods and classes as well
 A final method cannot be overridden by a child class
 A final class cannot be extended at all
 String is an example of a final class
 You can't extend String to make your own special kind of String!
 We want String behavior to be totally consistent

 From a design perspective, all classes should fall into two
categories:
 Classes that you expect to be extended
 Classes that should not be extended

 Classes that you expect to be extended might have abstract
methods and protected members, and they should be well-
documented for someone who wants to extend them

 Most classes will never be extended, so making them final
sends a clear message

 In this class, it's impossible to override the reverse()method

public class Message {
private String text;
public Message(String text) {

this.text = text;
}
public String getText() {

return text;
}
public final void reverse() {

String reversed = "";
for(int i = 0; i < text.length(); ++i)

reversed += text.charAt(text.length() – i – 1);
text = reversed;

}
}

 This class can never be extended

public final class Popeye {
private boolean spinach = false;
public boolean hasSpinach() {

return spinach;
}
public void giveSpinach() {

spinach = true;
}
public String toString() {

return "I am what I am.";
}

}

 All methods in interfaces are, by default, abstract
 An abstract method is only the signature of a method, not its

definition
 Abstract methods end with a semicolon instead of a body

defining what they do
 Any class that wants to implement the interface must

complete all its abstract methods
 You can put abstract methods in classes, but
 The method must be marked with the abstract keyword
 The class must be abstract too

 An abstract class is one that can't be instantiated
 It's intended to be the basis for inherited classes
 It's kind of like an interface in that it can contain abstract

methods
 But you can put regular methods in an abstract class
 And member variables!

 An abstract class gives you a framework but not all of the
implementation

 The Polygon abstract class makes a foundation for polygons:

public abstract class Polygon {
private final int sides;
public Polygon(int sides) {

this.sides = sides;
}
public final int getSides() {

return sides;
}
public abstract double getArea();
public abstract double getPerimeter();

}

 A class that extends an abstract class must implement all of its
abstract methods (or it will also have to be abstract)

public class Rectangle extends Polygon {
private double length;
private double width;
public Rectangle(double length, double width) {

super(4);
this.length = length;
this.width = width;

}
public double getArea() {

return length * width;
}
public double getPerimeter() {

return 2.0*length + 2.0*width;
}

}

 You can declare a variable with the type of an abstract class
 However, you can't instantiate an object of that type
 You can use the variable to store instances of subclasses

 Abstract classes provide more functionality than interfaces
 But you can only extend one abstract class while you can implement

an unlimited number of interfaces

Polygon polygon = new Rectangle(3.4, 7.1);
System.out.println(polygon.getSides()); // 4
Polygon triangle = new Polygon(3); // Compiler error

 Sometimes it's useful to know the true type of an object
 You can use the instanceof keyword to see if the type of

an object inherits from a particular class
 Syntax (produces a boolean):
 object instanceof Class

 An instanceof is almost always in an if statement:

Object object = getRandomObject();
if(object instanceof Hurricane)
System.out.println("You can call me slurricane.");

 instanceof doesn't tell you if an object is a particular class
 Instead, it tells you if it is that class or inherits from it
 Consider an object of type Whiskey, which inherits from Alcohol,

which inherits from Beverage (which inherits from Object)
Object object = new Whiskey();
if(object instanceof Whiskey) // true
System.out.println("Whiskey!");

if(object instanceof Alcohol) // true
System.out.println("Alcohol!");

if(object instanceof Beverage) // true
System.out.println("Beverage!");

if(object instanceof Object) // true
System.out.println("Object!");

if(object instanceof String) // false
System.out.println("String?");

 For situations where you need to know if the type of an object
matches exactly, you can use its getClass()method

 This returns a Class object, which you can compare using == to
the name of a type followed by .class

Object object = new Whiskey();
if(object.getClass() == Whiskey.class) // true
System.out.println("Whiskey!");

if(object.getClass() == Alcohol.class) // false
System.out.println("Alcohol!");

if(object.getClass() == Beverage.class) // false
System.out.println("Beverage!");

if(object.getClass() == Object.class) // false
System.out.println("Object!");

 The Unified Modeling Language (UML) is an international standard for
graphical models of software systems

 UML was developed in the mid 90s and adopted as an ISO standard in
2005

 UML diagrams can be divided into structural, behavioral, and interaction
categories (though interaction is really a subset of behavioral)

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 Class diagrams
 State diagrams

 Class diagrams are commonly used to describe inheritance
hierarchies in Java

 Despite their name, they are also used to model tables in
databases and other entities

 For inheritance,
 Arrows point from children up to parent classes
 Arrows with dashed lines point from classes to interfaces they implement

 Classes in class diagrams often have three parts:
 Top: Name
 Middle: Members
 Bottom: Methods

 Class diagrams show the different object classes and the
relationships between them

 These diagrams often show inheritance relationships
 The following symbols are used to mark class members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:
 Relationships can also be association, implementation,

dependency, aggregation, and composition and can be many
to one, one to one, many to many, etc.

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg

Pot

+ stir(int)

- size: int

Saucepan

+ stir(int)

«interface»
Stirrable

+ stir(int)

inherits

implements

 Exceptions

 Michael Thornton talk:
 How to get a Software Engineering Job
 Tuesday, February 4, 4-6 p.m.
 The Point 113

 Read Chapter 12
 Keep working on Project 1
 Due next Friday

	COMP 2000
	Last time
	Questions?
	Project 1
	Inheritance Examples
	The Person class
	Dynamic Binding
	How to think about inheritance
	Weaknesses of dynamic binding
	Static methods
	Two classes
	Static method example
	The final keyword
	Why would we want to make a class final?
	final method example
	final class example
	Abstract Classes
	Abstract methods
	Abstract classes
	Abstract class example
	Extending abstract classes
	Using abstract classes
	instanceof keyword
	More on instanceof
	getClass() method
	UML
	UML
	Class diagrams
	Class diagrams
	Class diagram example
	Upcoming
	Next time…
	Reminders

